Solid-State NMR Spectroscopy Method for Determination of the Backbone Torsion Angle ψ in Peptides with Isolated Uniformly Labeled Residues

Jerry C. C. Chan and Robert Tycko*
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520

Received June 30, 2003; E-mail: tycko@helix.nih.gov

Solid-state nuclear magnetic resonance (SSNMR) has proven to be indispensable for the structural elucidation of noncrystalline biological solids. ${ }^{1}$ Several SSNMR techniques, based on the principle of spin interaction tensor correlation, ${ }^{2-6}$ have been suggested for the determination of peptide backbone torsion angles ϕ and ψ under magic-angle spinning (MAS). Most techniques for ψ determination require isotopic labeling of two consecutive residues. ${ }^{7-14}$ However, in several recent structural studies by SSNMR, ${ }^{15,16}$ it has proven useful to label multiple isolated residues or short peptide segments (rather than the entire peptide chain) uniformly with ${ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ to facilitate spectral resolution and resonance assignment. Thus, techniques that require labeling of two consecutive residues are not generally applicable for ψ determination at all sites. Ishii et. al. have demonstrated the determination of ψ by correlation of the carbonyl $\left(\mathrm{C}^{\prime}\right){ }^{13} \mathrm{C}$ chemical shift anisotropy (CSA) and the ${ }^{13} \mathrm{C}_{\alpha}-{ }^{1} \mathrm{H}_{\alpha}$ dipolar tensors within a single labeled residue in a two-dimensional (2D) powder pattern spectrum. ${ }^{17}$ Although this is an attractive approach, the specific relayed anisotropy correlation (RACO) technique demonstrated by Ishii et al. works well only in the regime of slow $\operatorname{MAS}(<5 \mathrm{kHz})$ and is therefore not optimal for systems with multiple uniformly ${ }^{13} \mathrm{C}$ labeled residues. A major problem has been the difficulty of recoupling the carbonyl CSA under fast MAS ($>10 \mathrm{kHz}$) while retaining a static CSA powder pattern line shape (to maximize sensitivity to ψ) and simultaneously avoiding significant recoupling of ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ dipolar interactions. This difficulty has recently been alleviated by the ROCSA (recoupling of chemical shift anisotropy) technique developed in our laboratory. ${ }^{18}$

Here we show that it is possible to combine ROCSA and ${ }^{13} \mathrm{C}_{\alpha}-$ ${ }^{1} \mathrm{H}_{\alpha}$ dipolar dephasing by Lee-Goldburg (LG) irradiation ${ }^{19,20}$ to correlate the ${ }^{13} \mathrm{C}^{\prime} \mathrm{CSA}$ and the ${ }^{13} \mathrm{C}_{\alpha}-{ }^{1} \mathrm{H}_{\alpha}$ dipolar tensors. The ψ angle in any single uniformly labeled residue can then be determined under fast MAS, to within ambiguities dictated by symmetry. The implementation of the ROCSA-LG technique is shown in Figure 1. We measure ${ }^{13} \mathrm{C}^{\prime} \rightarrow{ }^{13} \mathrm{C}_{\alpha}$ cross-peak intensities in a series of 2 D ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ correlation spectra with variable ROCSA period and fixed LG period. Intensities arising from the real and imaginary ${ }^{13} \mathrm{C}^{\prime}$ transverse magnetization components after N ROCSA cycles are denoted $\operatorname{Re} N$ and $\operatorname{Im} N$. Numerical simulations indicate that essentially all information about the ψ angle is contained in $\operatorname{Re} 0$ (or Re1), Im1, Re2, Im2, and Re3. Thus, it is sufficient to record only five 2D spectra with the pulse sequence in Figure 1. Additionally, ${ }^{13} \mathrm{C}$ NMR signals are detected under high-resolution MAS conditions, resulting in significant improvements in sensitivity compared with results using the original RACO technique. ${ }^{17}$

Experiments were performed on two synthetic peptides with uniformly labeled residues. The 17 -residue peptide $\mathrm{MB}(i+4) \mathrm{EK}$ was synthesized with uniform labeling of Ala9 and examined in lyophilized form, where $\mathrm{MB}(i+4) \mathrm{EK}$ has been shown to be highly α-helical. ${ }^{12,21}$ The 15 -residue amyloid-forming peptide $\mathrm{A} \beta_{11-25}$ was

Figure 1. ROCSA-LG pulse sequence. Black and shaded rectangles represent $\pi / 2$ and π pulses. ${ }^{13} \mathrm{C}^{\prime}$ polarization is first modulated by CSA interactions using the ROCSA sequence ${ }^{18}$ for an even number of MAS rotor periods τ_{R}. After evolution at the isotropic C^{\prime} chemical shift for t_{1} and polarization transfer to ${ }^{13} \mathrm{C}_{\alpha}$ under the radio frequency-driven recoupling (RFDR) sequence, ${ }^{23}$ the polarization dephases due to ${ }^{13} \mathrm{C}_{\alpha}-{ }^{1} \mathrm{H}_{\alpha}$ couplings under LG irradation. ${ }^{13} \mathrm{C}_{\alpha}$ signals are detected in t_{2}.

Figure 2. Experimental ${ }^{13} \mathrm{C}^{\prime} \rightarrow{ }^{13} \mathrm{C}_{\alpha}$ cross-peak intensities in ROCSA-LG spectra for β-sheet (Phe19 and Phe20 of $\mathrm{A} \beta_{11-25}$) and α-helical (Ala9 of $\mathrm{MB}(i+4) \mathrm{EK})$ peptides, and simulations for indicated values of the backbone torsion angle ψ. Experiments were carried out at $100.8 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR frequency and 14.0 kHz MAS frequency.
prepared with uniform labeling of Val18, Phe19, Phe20, and Ala21, fibrillized at pH 7.4 , and lyophilized. In amyloid fibril form, residues 18-21 of $\mathrm{A} \beta_{11-25}$ reside in a β-strand. ${ }^{18,22}$
Figure 2 compares experimental ROCSA-LG data with numerical simulations. Simulations include the ${ }^{13} \mathrm{C}^{\prime},{ }^{13} \mathrm{C}_{\alpha}$, and ${ }^{1} \mathrm{H}_{\alpha}$ spins in the ROCSA, RFDR polarization transfer, ${ }^{23}$ and LG periods. Proton decoupling at 120 kHz , matching experimental conditions, is

Figure 3. Total squared deviations between experimental and simulated data normalized by mean squared noise $\left(\chi^{2}\right)$ as a function of the backbone torsion angle ψ for lyophilized $\mathrm{MB}(i+4) \mathrm{EK}$ (Ala9) and fibrillized $\mathrm{A} \beta_{11-25}$ (Val18, Phe19/Phe20, and Ala21).
included. Carbonyl CSA principal values were determined experimentally by ROCSA, ${ }^{18}$ and principal axis directions were taken from model compound studies. ${ }^{24}$ The ${ }^{13} \mathrm{C}_{\alpha}-{ }^{1} \mathrm{H}_{\alpha}$ bond length was set to $1.11 \AA$, as determined for $\mathrm{MB}(i+4) \mathrm{EK}$ from LG dephasing curves. Figure 2 demonstrates both the sensitivity of the ROCSA-LG technique to the ψ value and the dependence of experimental ROCSA-LG data on the peptide conformation.

Figure 3 shows the χ^{2} deviation between experiments and simulations as a function of the ψ value assumed in the simulations. Reflection symmetries about -60° and 120° are due to the symmetry properties of the CSA and dipolar interactions ${ }^{17}$ and are therefore unavoidable. Minimum χ^{2} values for Ala9 in $\mathrm{MB}(i+4)$ EK occur at -25° and -95°, consistent with the expected $\psi=$ $-40^{\circ} \pm 15^{\circ}$ for an α-helical conformation. Minimum χ^{2} values for the labeled residues in $\mathrm{A} \beta_{11-25}$ fibrils occur at $150-160^{\circ}$ and $80-90^{\circ}$, consistent with the expected $\psi=140^{\circ} \pm 20^{\circ}$ for a β-strand conformation. Thus, the ROCSA-LG technique can distinguish the two principal polypeptide secondary structures from one another and from other possible conformations at a site-specific level. Analysis of simulations (see Supporting Information) indicates that an experimental signal-to-noise of 10 in $\operatorname{Re} 0$ permits a unique determination of ψ to within roughly $\pm 20^{\circ}$ over the full range of ψ values, apart from the symmetry-related pairs.

We anticipate applications of the ROCSA-LG technique, together with previously reported techniques for ϕ angle determination, 25,26 in many structural problems where limited spectral resolution requires that uniformly labeled residues be introduced at isolated
positions in a peptide sequence. One such application is structural studies of amyloid fibrils formed by relatively long peptides, ${ }^{15}$ where achievable ${ }^{13} \mathrm{C}$ MAS NMR line widths are limited by the residual disorder inherent in a noncrystalline solid and where spectral resolution is additionally restricted by the predominance of β-strand conformations. Other possible applications include structural studies of peptides involved in biomineralization ${ }^{27}$ and structural studies of membrane-associated peptides and proteins, where the predominance of α-helical conformations frequently restricts spectral resolution ${ }^{28}$ and therefore may make uniform labeling of isolated residues an especially productive approach.

Acknowledgment. We thank Drs. G. Buntkowsky and A. T. Petkova for preparing the $\mathrm{A} \beta_{11-25}$ fibril sample. This work was supported by a grant from the Intramural AIDS Targeted Antiviral Program of the National Institutes of Health.

Supporting Information Available: Details of experiments and simulations; simulated contour plot demonstrating the sensitivity of ROCSA-LG data over the full range of ψ values (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Tycko, R. Annu. Rev. Phys. Chem. 2001, 52, 575-606.
(2) Henrichs, P. M.; Linder, M. J. Magn. Reson. 1985, 58, 458.
(3) Tycko, R.; Dabbagh, G. J. Am. Chem. Soc. 1991, 113, 3592.
(4) Robyr, P.; Meier, B. H.; Fischer, P.; Ernst, R. R. J. Am. Chem. Soc. 1994, 116, 5315.
(5) Schmidt-Rohr, K. J. Am. Chem. Soc. 1996, 118, 7601-7603.
(6) Feng, X.; Lee, Y. K.; Sandstrom, D.; Eden, M.; Maisel, H.; Sebald, A.; Levitt, M. H. Chem. Phys. Lett. 1996, 257, 314-320.
(7) Costa, P. R.; Gross, J. D.; Hong, M.; Griffin, R. G. Chem. Phys. Lett. 1997, 280, 95-103.
(8) Feng, X.; Eden, M.; Brinkmann, A.; Luthman, H.; Eriksson, L.; Graslund, A.; Antzutkin, O. N.; Levitt, M. H. J. Am. Chem. Soc. 1997, 119, 1200612007.
(9) Bower, P. V.; Oyler, N.; Mehta, M. A.; Long, J. R.; Stayton, P. S.; Drobny, G. P. J. Am. Chem. Soc. 1999, 121, 8373 -8375.
(10) Eden, M.; Brinkmann, A.; Luthman, H.; Eriksson, L.; Levitt, M. H. J. Magn. Reson. 2000, 144, 266-279.
(11) Reif, B.; Hohwy, M.; Jaroniec, C. P.; Rienstra, C. M.; Griffin, R. G. J. Magn. Reson. 2000, 145, 132-141.
(12) Blanco, F. J.; Tycko, R. J. Magn. Reson. 2001, 149, 131-138.
(13) Rienstra, C. M.; Hohwy, M.; Mueller, L. J.; Jaroniec, C. P.; Reif, B.; Griffin, R. G. J. Am. Chem. Soc. 2002, 124, 11908-11922.
(14) Ladizhansky, V.; Veshtort, M.; Griffin, R. G. J. Magn. Reson. 2002, 154, 317-324.
(15) Petkova, A. T.; Ishii, Y.; Balbach, J. J.; Antzutkin, O. N.; Leapman, R. D.; Delaglio, F.; Tycko, R. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1674216747.
(16) Jaroniec, C. P.; MacPhee, C. E.; Astrof, N. S.; Dobson, C. M.; Griffin, R. G. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 16748-16753.
(17) Ishii, Y.; Terao, T.; Kainosho, M. Chem. Phys. Lett. 1996, 256, 133140.
(18) Chan, J. C. C.; Tycko, R. J. Chem. Phys. 2003, 118, 8378-8389.
(19) Lee, M.; Goldburg, W. I. Phys. Rev. A 1965, 140, 1261.
(20) Hong, M.; Gross, J. D.; Rienstra, C. M.; Griffin, R. G.; Kumashiro, K. K.; Schmidt-Rohr, K. J. Magn. Reson. 1997, 129, 85-92.
(21) Long, H. W.; Tycko, R. J. Am. Chem. Soc. 1998, 120, 7039-7048.
(22) Tycko, T.; Ishii, Y. J. Am. Chem. Soc. 2003, 125, 6606-6607.
(23) Bennett, A. E.; Rienstra, C. M.; Griffiths, J. M.; Zhen, W. G.; Lansbury, P. T.; Griffin, R. G. J. Chem. Phys. 1998, 108, 9463-9479.
(24) Oas, T. G.; Hartzell, C. J.; McMahon, T. J.; Drobny, G. P.; Dahlquist, F. W. J. Am. Chem. Soc. 1987, 109, 5956-5962.
(25) Hong, M.; Gross, J. D.; Griffin, R. G. J. Phys. Chem. B 1997, 101, 58695874.
(26) Takegoshi K.; Terao T. Solid State NMR 1999, 13, 203-212.
(27) Long, J. R.; Shaw, W. J.; Stayton, P. S.; Drobny, G. P. Biochemistry 2001, 40, 15451-15455.
(28) Opella, S. J.; Nevzorov, A.; Mesleh, M. F.; Marassi, F. M. Biochem. Cell Biol. 2002, 80, 597-604.

JA0369820

